

B.Sc Biotechnology

Vth Semester

Effective from Session: 2020-21										
Course Code	BS301	Title of the Course	itle of the Course Animal Biotechnology L							
Year	III	Semester	V	3	1	0	4			
Pre-Requisite	10+2 with Biology	Co-requisite								
Course Objectives	The course applications	has been designed to i in Cell culture, Produ	nake students aware of basic animal biotechnology te- action of transgenic, Expression of Cloned proteins an	chniqu d vaco	ues, the	r				

	Course Outcomes							
CO1	Get proper knowledge about the history and Scope of Animal Tissue Culture, Culture Media, Simulating natural conditions for							
	growth of animal cells.							
CO2	Gain knowledge about Primary Culture, cell lines and Secondary Culture, transformed animal cells and continuous cell lines, Monolayer formation, Synchronization.							
CO3	Learn about transfection of animal cell lines, Selectable markers and Transplantation of Cultured Cells.							
	Microinjection, In vitro fertilization and Stem cell technology.							
CO4	Learn about the basics of expression of Cloned proteins in animal cells and Production of Vaccines in animal Cells.							
CO5	Have knowledge of Production and Applications of monoclonal antibodies, and Transgenic Animals							

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	History and Scope of Animal Tissue Culture	Culture Media, Simulating natural conditions for growth of animal cells, Natural media: Plasma Clot, biological fluids tissue extract, Importance of Serum in media, Chemical defined media, serum free media.	8	CO1
2	2 Primary Culture Cell lines, and cloning, isolation and mechanical disaggregation of tissue, enzyme. 2 Primary Culture Secondary Culture: transformed animal cells and continuous cell lines. Monolayer formation, Synchronization.			CO2
3	Transfection of animal cell lines	Selectable markers and Transplantation of Cultured Cells. Microinjection, <i>In vitro</i> fertilization. Stem cell technology.	8	CO3
4	Expression of Cloned proteins in animal cell	Expression vector, over production and downstream processing of the expressed proteins, Production of Vaccines in animal Cells.	8	CO4
5	Production and Applications of monoclonal antibodies	HAT selection, Transgenic Animals: Techniques and Applications and Transgenic mice and sheep.	8	CO5
Referen	ce Books:			
1.Ian l	Freshney Animal cell	culture.(4th Edition)		
2. But	tler. Elements of Biot	echnology – P.k. Gupta (1st Edition -2000) Rastogi Publications.		
3.Dav	is, Cell culture techni	ques.		
e-Lear	ning Source:			

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)										
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO											
CO1	3	1			1		2	3	3	3	
CO2	3	1			2		2	3	3	3	
CO3	3	1		2	3		3	3	3	3	
CO4	3	1		2	3		3	3	3	3	1
CO5	3	1		1	3	1	3	3	3	3	1

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator

Sign & Seal of HoD

Effective from Session: 2020-2021										
Course Code	BS302	Title of the Course Plant Biotechnology L		L	Т	Р	С			
Year	III	Semester	V	3	1	0	4			
Pre-Requisite	10+2 with Biology	Co-requisite								
Course Objectives	The course has been designed to make students aware of basic plant biotechnology techniques and their applications in plant growth and development and large scale production of natural products from plant source									

Course	Outcomes
CO1	Get proper knowledge about the history and Scope of Animal Tissue Culture, Culture Media, Simulating natural conditions for growth of
	animal cells.
CO2	The students will learn the role of techniques haploid plant production and its significance.
CO3	The students will learn about the protoplast isolation and somatic hybridization of protoplast and its application.
CO4	The students will learn about the role of plant tissue culture in agriculture, horticulture and forestry.
CO5	The students will learn about the transgenic plants and different strategies to make recombinant and its application

Unit No.	Title of the Unit	Content of Unit	Conta ct Hrs.	Mapped CO				
1	Aseptic Techniques for Callus and suspension culture	Aseptic Techniques, Nutrient media, and use of growth regulators (Auxins, Cytokininis and Gibberellins). Callus and suspension	8	CO-1				
2	Haploid plant production	Microspore and ovule culture, Organ Culture and their applications, Organogenesis and Somatic Embryogenesis: Techniques and applications		CO-2				
3	Protoplast Culture	Somatic hybridization, methods of protoplast fusion chemical and electro fusion, practical application of somatic hybridization. Somaclonal variation and their significance, In vitro production of secondary metabolites: Techniques and significance		CO-3				
4	Role of tissue culture in agriculture, horticulture and forestry, Transgenic plants, Technique of transformation	Agrobacterium-mediated and physical methods (Microprojectile bombardment and electroporation)		CO-4				
5	Applications	Applications of transgenic plants, Edible Vaccines	8	CO-5				
Referen	ce Books:							
1. Ra	avishankar G.A and Venkata	raman L.V(1997) Biotechnology applications of Plant Tissue & cell culture. Oxford &IBH Pu	blishing c	o., Pvt Ltd.				
2. Bl	han (1998) tissue Culture, M	ittal Publications, New Delhi						
3. H	. S. Chawla "Plant Biotechno	ology: A Practical Approach"						
4. Cl	4. Chrispeel M.J. and Sdava D.E. (1994 Plants, Genes and agriculture, Jones and Barlett Publishers, Boston.							
5. Ly	diane Kyte & John Kleyn (1	996) Plants from test tubes. An introduction to Micropropogation (3rd Edition) timber Press,	Partland					
e-Lear	ning Source:							

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)										
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO											
CO1	3	1				2	1	3	3	3	
CO2	3	1				2	1	3	3	3	
CO3	3	1				2	1	3	3	3	
CO4	3	1	2	1		2	3	3	3	3	
CO5	3	1	1		2	2	2	3	3	3	1

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020-21									
Course Code	BS303	Title of the Course	e of the Course Genetic Engineering L			Р	С		
Year	III	Semester	V	3	1	0	4		
Pro Doquisito	10+2 in	Co roquisito							
Tre-Requisite	Biology	Co-requisite							
	The course has been designed to make students aware of DNA manipulative enzymes and Gene cloning vectors, Screening								
Course Objectives	and selection of recombinants, Techniques used as Polymerase chain reaction (PCR), Site directed mutagenes is (SDM),								
-	Nucleic acid sequencing and Application of r-DNA techniques								

	Course Outcomes									
CO1	Get proper knowledge about the DNA manipulative enzymes: Restriction enzymes and DNA ligases, and Gene cloning vectors.									
CO2	Gain knowledge about In vitro construction of recombinant DNA molecules, passenger and vector DNA, and Transformation									
CO3	Learn about screening and selection of recombinant host cells, Gene Libraries, cloning techniques, Expression of cloned DNA									
CO4	Learn about the basics of Electrophoretic techniques, Polymerase chain reaction (PCR), Site directed mutagenesis (SDM), Nucleic acid									
	sequencing: Blotting techniques.									
CO5	Gain knowledge of Application of r-DNA technique in human health, Production of Insulin, Production of recombinant vaccines: Hepatitis B,									
	Production of human growth hormone.									

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO				
1	DNA manipulative enzymes	Restriction enzymes and DNA ligases, Gene cloning vectors: Plasmids, Bacteriophage and Chimeric plasmids.	08	CO-1				
2	rDNA	<i>In vitro</i> construction of recombinant DNA molecules (pBR332, pUC19), Isolation of passenger and vector DNA, creation of r-DNA, Transformation of r-DNA by different methods.	08	CO-2				
3	Screening and selection of recombinant host cells	Immunological screening and colony hybridization, Gene Libraries: Genomic DNA and cDNA cloning techniques, Expression of cloned DNA in <i>E. coli</i> .	08	CO-3				
4	Techniques Electrophoretic techniques, Polymerase chain reaction (PCR), Site directed Techniques mutagenesis (SDM), Nucleic acid sequencing: Sanger's method, Blotting techniques: Southern							
5	Applications	Application of r-DNA technique in human health, Production of Insulin, Production of recombinant vaccines: Hepatitis B, Production of human growth hormone.	08	CO-5				
Refere	nce Books:							
1. Glick for Mic	x, B.R & Pasternak J.J (1994) Mo robiology, Washington D.C	lecular Biotechnology, Princi[ples and Applications of Recombinant DNA, American So	ociety					
2. Chris	stopler H. (1995) Gene cloning an	d Manipulating, Cambridge University Press						
3. Nich	oll, D.S.T (1994) An Introduction	of Genetic Engineering, Cambridge University Press.						
4. Old. R.W. and Primrose, S.B. (186) Principles of Gene manipulation, An introduction to genetic engineering (3rd Edition) Black well Scientific Publications								
5. Wats	5. Watson J.D. Hopkins, N.H Roberts, J.W.Steitz J.A and Weiner A.M (1988). Molecular biology of society for Microbiology							
6. Lewi	n b. (1994) Genes VI, New York,	Oxford University Press						

e-Learning Source:

	Course Art	iculation Ma	trix: (Mappi	ng of COs wi	th POs and I	PSOs)					
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO											
CO1	3	1					2	3	3	3	
CO2	3	1					2	3	3	3	
CO3	3	1					2	3	3	3	
CO4	3	1		2	2		2	3	3	3	
CO5	3	1		1	1	1	3	3	3	3	1

Name & Sign of Program Coordinator	Sign & Seal of HoD	
Name & Sign of Frogram Coordinator		

Effective from Session: 2016	5-17								
Course Code	BS304	Title of the Course	Medical Biotechnology	L	Т	Р	C		
Year	III Semester V 3					0	4		
Dro Doquisito	10+2 with	Co requisito							
Pre-Requisite	Biology	Co-requisite							
Course Objectives	The course has been designed to make students aware of Zoonoses, Fungi and viruses, Pathology of								
Course Objectives	diseases, The	rapies and Medico-legal	aspects.						

	Course Outcomes
CO1	The student will understand Classifications of pathogenic microbes, Leptospira, Brucella, bacillus anthracis, Medical Parasitology:
	Amebiasis, Cytosporidiosis, Giardiasis, Malaria, Toxoplasmosis, Trichomoniasis, Medical Bacteriology: Staphylococcus, Streptococcus and
	enterococcus, Peneumococcus, Mycobacterium, Bacillus, Salmonella, Shigella, Pseudomonas and Non-fermenters, Vibrio.
CO2	The student will understand Adenoviruses, Pox viruses, Hepadnaviruses, Arboviruses, Retroviruses, Medical Mycology: Fungi, Yeast,
	Pathogenic fungi, superficial Mycoses, cutaneous Mycoses, subcutaneous Mycoses, Systemic Mycoses.
CO3	The student will understand Blood formation, Anemia; Blood loss anemia, Magaloblastic anemia, Leukaemia, The Parts of Brain, Brain
	Tumours, Stem cells: stem cell or Bone marrow transplant, , Pathology of Tuberculosis, Yellow Fever, Japanese Encephalitis, Dengue,
	Acquired Immune Deficiency Syndrome (AIDS).
CO4	The student will understand Introduction to chemotherapy and radiotherapy, Human Gene Therapy. Antibiotics: Classification of Antibiotics,
	Combinations of Antibiotics, Doses of Antibiotics, Side Effects of Antibiotics, General Principles for use of Antibiotics
CO5	The student will understand Social: genetic discrimination: insurance and employment, human cloning, foeticide, sex determination,
	Ethical: somatic and germ line gene therapy, clinical trials, the right to information, ethics committee function.

Unit No.	Title of the Unit Content of Unit								
1	Definition of Zoonoses	Classifications of pathogenic microbes, Leptospira, Brucella, bacillus anthracis, Medical Parasitology: Amebiasis, Cytosporidiosis, Giardiasis, Malaria, Toxoplasmosis, Trichomoniasis, Medical Bacteriology: Staphylococcus, Streptococcus and enterococcus, Peneumococcus, Mycobacterium, Bacillus, Salmonella, Shigella, Pseudomonas and Non- fermenters, Vibrio.	8	CO1					
2	2 Medical Virology Adenoviruses, Pox viruses, Hepadnaviruses, Arboviruses, Retroviruses, Medical 2 Medical Virology Mycology: Fungi, Yeast, Pathogenic fungi, superficial Mycoses, cutaneous Mycoses, subcutaneous Mycoses, Systemic Mycoses.								
3	3 Pathology of diseases Blood formation, Anemia; Blood loss anemia, Magaloblastic anemia, Leukaemia, The Parts of Brain, Brain Tumours, Stem cells: stem cell or Bone marrow transplant, , Pathology of Tuberculosis, Yellow Fever, Japanese Encephalitis, Dengue, Acquired Immune Deficiency Syndrome (AIDS).								
4	4 Therapies Introduction to chemotherapy and radiotherapy, Human Gene Therapy. Antibiotics: Classification of Antibiotics, Combinations of Antibiotics, Doses of Antibiotics, Side Effects of Antibiotics, General Principles for use of Antibiotics								
5	5 Medico-legal aspects Social: genetic discrimination: insurance and employment, human cloning, foeticide, sex determination, Ethical: somatic and germ line gene therapy, clinical trials, the right to information, ethics committee function.								
Referen	ce Books:								
1.Chae	chter M. Medoff G. and	Eisenstein BC. (1993) Mechanism of Microbial Diseases 2nd edition. Williams and Wilkins, Ba	altimore.						
2. Coll	ee, JG. Duguid JP., Fra	ser AG., Marimon BP. (1989) Mackie and Mc Cartney							
Practic	al Medical Microbiolog	gy, 13th Edition. Churchill Livingstone.							
3. Dav	id Greenwood, Richard	CD, Slack, John Forrest Peutherer. (1992) Medical							
4 Hug	o WB and Russell AD	(1989) Pharmaceutical Microbiology IV edition							
Blackv	vell Scientific Publication	on, Oxford.							
e-Lear	ning Source:								
https://d	rive.google.com/drive	/folders/1bBZedCG9626vNPWW6gatbC0MCHIKI9?usp=sharing							
https://d	rive.google.com/file/d	/1SQkoP6pERFCbHMj9RH49aaPUAF2Obed6/view?usp=sharing							
https://d	rive.google.com/drive	/folders/119ENpJ9H6BPDgl_Tf2riQqgcIUj_yaUy?usp=sharing							

Course Articulation Matrix: (Mapping of COs with POs and PSOs)

PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PS O4
CO1	3	3	1				3	3	3	3	
CO2	3	3	1				3	3	3	3	
CO3	3	3	1				3	3	3	3	
CO4	3	3	1				3	3	3	3	
CO5	3	3	1				3	3	3	3	

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020)-21						
Course Code	BS306	Title of the Course	APPLIED BIOTECHNOLOGY	L	Т	Р	C
Year	III	Semester	V	3	1	0	4
Pre-Requisite	10+2 with Biology	th Co-requisite					
Course Objectives	The objective of and target iden General theory and Detailed, i	of this course is to tification, target v of free radical an nformation on pa	make students familiar with principle, methodology an validation, Bioprospecting and conservation: importan and antioxidants, Significance of IPR; Requirement of a tenting biological products and biodiversity	d app ce of a pater	lication biodive ntable	n of Dru ersity, novelty	ıg ′

		Course Outcomes
C	201	Get proper knowledge about Genomics and Proteomics and gene expression.
C	CO2	Gain knowledge about Drug Discovery and Designing: Drug and target identification, target validation.
C	CO3	Learn about Bioprospecting and conservation: importance of biodiversity.
C	CO4	Learn about the basics of Free Radical Biology: General theory of free radical and antioxidants.
C	205	Have knowledge of Significance of IPR; Requirement of a patentable novelty and Detailed, information on patenting
		biological products and biodiversity.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Genomics and Proteomics	Introduction to genomics, Genome annotation, Human genome project and its application, Introduction to Proteomics: Protein expression and its analysis	8	CO1
2	Drug Discovery and Designing	Drug and target identification, target validation, Molecular docking studies and its Insilco tools e.g. Autodock, GOLD.	8	CO2
3	Bioprospecting and conservation	Importance of biodiversity. biodiversity informatics, databases in biological materials. International efforts and issues of sustainability.	8	CO3
4	Free Radical Biology	General theory of free radical and antioxidants. Free radical mediated damage to lipids, proteins and DNA; Natural antioxidants and their applications.	8	CO4
5	IPR and Patenting	Significance of IPR; Requirement of a patentable novelty; Issues related to IPR protection of software and database; IPR protection of life forms; International convention in IPR; Obtaining patent; Invention step and prior art and state of art procedure; Detailed information on patenting biological products and biodiversity.	8	CO5
Referen	ce Books:			
e-Lear	ning Source:			

		-	-	_	Co	urse A	rticula	tion Matrix:	(Mapping of	COs with POs	and PSOs)	_	
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	1					1	3	3	3			
CO2	3	1					2	3	3	3			
CO3	3	1			1	3	3	3	3	3	1		
CO4	3	1					2	3	3	3			
CO5	3	1			3	2	3	3	3	3	3		

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020-21							
Course Code	BS307	Title of the Course	Tissue Culture Lab	L	Т	P	С
Year	3 rd	Semester	V th	0	0	6	4
Pre-Requisite	10+2 with Biology	Co-requisite					
Course Objectives	The objective of t	he objective of this course is to develop the understanding of Basics of Tissue and cell culture					

	Course Outcomes
CO1	Preparation of plant culture media and its sterilization
CO2	Initiation and maintenance of Callus and suspension Culture, cell culture
CO3	Plant propagation through axillary bud culture and adventitious bud culture
CO4	Isolation of lymphocytes from blood samples. In vitro maintenance of helminth parasites
CO5	In vitro germination of seeds.

Exp. No.	Title of Experiment	Contact hrs.	Mapped CO
Exp-01	Preparation of plant culture media and its sterilization	3	CO-1
Exp-02	In vitro germination of seeds.	3	CO-5
Exp-03	Initiation and maintenance of Callus and suspension Culture	3	CO-2
Exp-04	Plant propagation through axillary bud culture.	3	CO-3
Exp-05	Plant propagation through adventitious bud culture.	3	CO-3
Exp-06	Isolation of lymphocytes from blood samples.	6	CO-4
Exp-07	In vitro maintenance of helminth parasites.	6	CO-5
Exp-08	In vitro maintenance of cell lines.	6	CO-4
Reference Boo	ks:		

e-Learning Source:

		Course Articulation Matrix: (Manning of COs with POs and PSOs)									
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO											
CO1	3	3	1			1	3	3	3	3	
CO2	3	3	1				3	3	3	3	
CO3	3	3	1			1	3	3	3	3	
CO4	3	3	1				3	3	3	3	
CO5	3	3	1			3	3	3	3	3	

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020-21							
Course Code	BS308	Title of the Course	Genetic Engineering Lab	L	Т	P	С
Year	3	Semester	V	0	0	6	3
Pre-Requisite	10+2 with Biology	Co-requisite					
Course Objectives	The objective of this c	The objective of this course is to develop the understanding of basics of genetic engineering and PCR.					

	Course Outcomes				
CO1	The students will be able to isolate genomic DNA from bacteria, plant, and animal tissues.				
CO2	The students will be able to isolate plasmid DNA (E. coli).				
CO3	The students will be able to perform restriction digestion of DNA.				
CO4	The students will be able to perform Agarose Gel Electrophoresis.				
CO5	The students will be able to explain Polymerase Chain Reaction.				

Exp. No.	Title of Experiment	Contact hrs.	Mapped CO	
Exp-01	Isolation of genomic DNA from bacteria (E. coli)	3	CO-1	
Exp-02	Isolation of genomic DNA from plant tissue	3	CO-1	
Exp-03	Isolation of genomic DNA from animal tissue	3	CO-1	
Exp-04	Isolation of plasmid DNA (E. coli)	3	CO-2	
Exp-05	Restriction digestion of DNA	6	CO-3	
Exp-06	Agarose Gel Electrophoresis	6	CO-4	
Exp-07	Demonstration of PCR	6	CO-5	
Reference Bool	xs:			
1. Gene Cloning and DNA Analysis: An Introduction, 6th Edition by T. A. Brown				
2. Sambrook J, Russell D (2001) Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.				
e-Learning Source:				

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)										
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
<u>CO</u>	101	102	105	101	105	100	10,	1501	1502	1505	1501
CO1	3	3	1				3	3	3	1	3
CO2	3	3	1				3	3	3	1	3
CO3	3	3	1				3	3	3	1	3
CO4	3	3	1				3	3	3	1	3
CO5	3	3	1				3	3	3	1	3
		~		~							

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator Sign & Seal of HoD

VIth Semester

Effective from Session: 2020-21							
Course Code	BS311	Title of the Course	Bioinformatics	L	Т	Р	C
Year	III	Semester	VI	3	1	0	4
Pre-Requisite	10+2 with Biology	Co-requisite					
Course Objectives	The object Bioinforma Bioinforma	The objective of this course is to develop the understanding of basics of Application of Bioinformatics, Sequence Formats, Sequence Alignment, Data mining and Application of Bioinformatics					

	Course Outcomes				
CO1	Know basics of Bioinformatics				
CO2	Have knowledge of GenBanks, EMBL, DDBJ, Swissprot, PIR/NBRF, IG, GCG, FAST				
CO3	Know about basics of Sequence Alignment				
CO4	Get insight visualization				
CO5	Understand basics of Gene finding tools, Phylogenetic tree, Protein structure visualization, Protein structure				
	prediction, homology modeling				

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction to Bioinformatics	Bioinformatics an introduction, Biological database types, sequence databases - nucleotide and protein sequence databases.	8	CO1
2	Sequence Formats	GenBank, EMBL, DDBJ, Swissprot, PIR/NBRF, IG, GCG, FASTA	8	CO2
3	Sequence Alignment	Pairwise Sequence Alignment, Multiple Sequence Alignment, Dynamic Programming, Progressive Alignment, Smith-Waterman Algorithm, Needleman-Wunsch Algorithm, Scoring Matrices	8	CO3
4	Data mining in Bioinformatics	Introduction to data mining, Categories of data mining, Data mining methods, Knowledge discovery, Data modeling, Data visualization, Application of data mining in bioinformatics.	8	CO4
5	Application of Bioinformatics	Introduction to Gene finding tools, Phylogenetic tree, Protein structure visualization, Protein structure prediction, homology modeling.	8	CO5
Referen	ce Books:			

e-Learning Source:

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)																	
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
00																		
CO1	3	1					1						3	3	3			
CO2	3	1				1	1						3	3	3			
CO3	3	1					1						3	3	3			
CO4	3	1				1	1						3	3	3			
CO5	3	1				1	1						3	3	3			

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020-21										
Course Code	BS312	Title of the Course	BIONANOTECHNOLOGY	L	Т	Р	C			
Year	III	Semester	VI	3	1	0	4			
Pre-Requisite	10+2 Biology	Co-requisite								
Course Objectives	The objective of this course is to develop the understanding of Basics of nanotechnology and overview of									
Course Objectives	nanoscale materials, Nanomaterials: Biosensors: Biophotonics and Bioimaging and Principles of toxicology;									

	Course Outcomes								
CO1	Understand the basics of nanotechnology and overview of nanoscale materials.								
CO2	Understand the basics of Nanomaterials.								
CO3	Understand the basics of Biosensors.								
CO4	Understand the basics of Biophotonics and Bioimaging.								
CO5	Understand the Principles of toxicology.								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction	Introduction to nanotechnology and overview of nanoscale materials, effect of length scale on properties, introduction to bionanotechnology, challenges and opportunities associated with biology on the Nanoscale, bionanotechnology systems, biological and medical applications of Bionanomaterials.	8	CO.1
2	Nanomaterials	Introduction to nanomaterials. DNA based nanostructures. General surface and colloid chemistry, principles, experimental techniques, surface potential, DLVO theory; Characteristics of nanoparticles, chemical speciation of dissolved species, Environmental behaviour of nanoparticles.	8	CO.2
3	Biosensors	Introduction to biosensors, the biological component, the sensor surface, Immobilization of the sensor molecule, Transduction of the sensor signal: Optical, Electrochemical and Mechanical sensors, Sensor stabilization	8	CO.3
4	Biophotonics and Bioimaging	Overview of imaging biological systems, from the cellular level through to whole-body medical imaging, Introduction to biophysics, basic physical concepts in imaging, Major techniques using ionizing and non-ionizing radiation: fluorescence and multi-photon microscopy, spectroscopy, OCT, MRI, X-ray CT, PET and SPECT imaging.	8	CO.4
5	Nanotoxicology	Principles of toxicology; toxicology models, experimental toxicology studies; activation and detoxification mechanisms, importance of biological membrane in toxicology; Toxicology and bioaccumulation of particles. Biological activity of nanomaterials.	8	CO.5

Reference Books:

- Engines of Creation, K E Drexler, Oxford Paperbacks, New York
- .Engines of Creation, K E Drexler, Oxford Paperbacks, New York
- Nanosystems: Molecular Machinery, Manufacturing and Computation, K E Drexler, Wiley, ISBN 0471575186
- Our Molecular Future: How Nanotechnology, Robotics, Genetics and Artificial Intelligence Will Transform the World, Prometheus ISBN 1573929921
- Nanobiotechnology-Concepts, Applications and Perspectives edited by CM Niemeyer and CA Mirkin, Wiley-VCH ISBN 527-30658-7
- NanoBiotechnology Protocols in Methods in Molecular Biology Series Edited by SJ Rosenthal and DW Wright, Humana Press, ISBN: 1-58829-276-2
- Understanding Nanotechnology Scientific American, ISBN: 0446679569 Prey (a novel) by Michael Crichton, ISBN: 006621412

e-Learning Source:

www.nanotechweb.org; www.nano.gov; www.nanotec.org.uk

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4			
CO														
CO1	3	1					1	3	3	3				
CO2	3	1					1	3	3	3				
CO3	3	1				2	1	3	3	3				
CO4	3	1				1	1	3	3	3				
CO5	3	1			1	3	1	3	3	3	1			

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session:2020-21										
Course Code	BS314	Title of the Course	BIOINFORMATICS LAB	L	Т	Р	С			
Year	III	Semester	VI	0	0	6	4			
Pre-Requisite	10+2 with Biology	Co-requisite								
Course Objectives	The objective of this c sequence comparison Alignment (ClustalX o tools (Grail or Gensca	course is to develop the using DOTPLOT, Pairv & Treeview), Protein St n)	understanding of sequence databases, Retrieving sec vise Sequence Alignment , FASTA & BLAST searc ructure Visualization (RASMOL, Swiss-PDB View	juence h, Mu er) and	es, Simp ltiple So d Genel	le equence Finding	;			

	Course Outcomes								
CO1	Learn about types of sequence databases (Nucleotide & Protein)								
CO2	Know about Retrieving sequences from the databases and simple sequence comparison using								
	DOTPLOT								
CO3	Have knowledge of Pairwise Sequence Alignment (NW and SW approach), FASTA & BLAST search								
	and Multiple Sequence Alignment (ClustalX & Treeview)								
CO4	Have basic knowledge of Protein Structure Visualization (RASMOL, Swiss-PDB Viewer)								
CO5	Have basic knowledge about Gene Finding tools (Grail or Genscan)								

Exp. No.	Title of Experiment	Contact hrs.	Mapped CO
Exp-01	Introduction to types of sequence databases (Nucleotide & Protein).	3	CO-1
Exp-02	Retrieving sequences from the databases.	3	CO-2
Exp-03	Simple sequence comparison using DOTPLOT.	3	CO-2
Exp-04	Pairwise Sequence Alignment (NW and SW approach).	3	CO-3
Exp-05	FASTA & BLAST search.	3	CO-3
Exp-06	Multiple Sequence Alignment (ClustalX & Treeview).	3	CO-4
Exp-07	Protein Structure Visualization (RASMOL, Swiss-PDB Viewer).	6	CO-5
Exp-08	Gene Finding tools (Grail or Genscan).	6	
Reference Boo	ks:		
1			

e-Learning Source:

			С	ourse Articul	lation Matrix	: (Mapping	of COs with l	POs and PSO	s)		
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO1	3	3	1				3	3	3	3	
CO2	3	3	1			1	3	3	3	3	
CO3	3	3	1				3	3	3	3	
CO4	3	3	1			1	3	3	3	3	
CO5	3	3	1			1	3	3	3	3	

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020-21										
Course Code	BS315	Title of the Course	PROJECT & TRAINING	L	Т	P	С			
Year	III	Semester	VI				4			
Pre-Requisite	10+2 Biology	Co-requisite								
Course Objectives The main objective of this course is to acquaint the student with various techniques used in										
Course Objectives	contemporary research in biotechnology or allied areas.									

	Course Outcomes								
CO1	To be able to define a research problem.								
CO2	To conduct bench work.								
CO3	To prepare the research report and its oral demonstrations.								
CO4	To coorealate theoretical knowledge of techniques with practical application								
CO5	To promote lifelong learning								

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	2		1	1		3	3	3	3			
CO2	3	3	2	1	3		3	3	3	3	3		
CO3	3	3	2	1	3		3	3	3	3			
CO4	3	3					3	3	3	3			
CO5	3	3					3	3	3	3	1		

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020-21											
Course Code	BS316	Title of the Course	EDUCATIONAL TOUR	L	Т	Р	С				
Year	III	Semester	VI				2				
Pre-Requisite	10+2 Biology	Co-requisite									
	The main objective of this course is to provide the students an exposure to various research activities in										
Course	the country and acquaint the student with state of the art technique/instruments used in various research										
Objectives	institutions and industries of national repute. The student needs to submit a report after completion of										
	the tour.										

	Course Outcomes							
CO1	Develop understanding of state of the art techniques/instruments used in various reputed research institutions. and industries							
CO2	Tales nort in Cassan discussion and losse Tases much							
02	Take part in Group discussion and learn Team work.							
CO3	Enhance communication and social skills by communication with peers							
CO4	Student shall be able to plan and improve the Technical Report writing skills							
CO5	Have created Interest to pursue lifelong learning.							

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO-													
PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO													
CO1	3	1	1				3	3	3	3	1		
CO2	3	2	2	1			3	3	3	3			
CO3	3	2	2	1			3	3	3	3			
CO4	3	2					3	3	3	3			
CO5	3			1		2	3	3	3	3	1		

Name & Sign of Program Coordinator	Sign & Seal of HoD